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Abstract

In multi-task learning (MTL), tasks are learned
jointly so that information among related tasks is
shared and utilized to help improve generalization
for each individual task. A major challenge in MTL
is how to selectively choose what to share among
tasks. Ideally, only related tasks should share in-
formation with each other. In this paper, we pro-
pose a new MTL method that can adaptively group
correlated tasks into clusters and share informa-
tion among the correlated tasks only. Our method
is based on the assumption that each task param-
eter is a linear combination of other tasks’ and
the coefficients of the linear combination are active
only if there is relatedness between the two tasks.
Through introducing trace Lasso penalty on these
coefficients, our method is able to adaptively select
the subset of coefficients with respect to the tasks
that are correlated to the task. Our model frees
the process of determining task clustering struc-
ture as used in the literature. Efficient optimiza-
tion method based on alternating direction method
of multipliers (ADMM) is developed to solve the
problem. Experimental results on both synthetic
and real-world datasets demonstrate the effective-
ness of our method in terms of clustering related
tasks and generalization performance.

1 Introduction

Multi-task learning (MTL) aims at learning multiple differ-
ent tasks together by transferring knowledge among them to
improve generalization across all the tasks [Caruana, 1997;
Pan and Yang, 2010]. The general idea is to extract and ex-
ploit shared information in related tasks, so that knowledge
in terms of features or model parameters can be transferred
among tasks. In most existing MTL methods, this is achieved
by introducing an inductive bias in the hypothesis space of
all tasks. The inductive bias includes assumptions on the task
relatedness structure. Different assumptions lead to different
particular approaches. Some assume that task parameters are
close to each other or share a common prior [Evgeniou and
Pontil, 2004], while some assume that they lie in a low rank
subspace [Ando and Zhang, 2005; Argyriou et al., 2008b;

Liu et al., 2009]. Chen et al. (2011) further assumes that
the task parameters could be modeled by a combination of
low rank and group sparse structure, where the second part is
used for accounting outlier tasks. A key question in incorpo-
rating such assumptions is how to selectively transfer knowl-
edge among related tasks only, and ensure that unrelated tasks
do not affect each other. If information among unrelated tasks
are shared with each other, generalization performance may
become worse, which is known as negative transfer [Rosen-
stein et al., 2005; Pan and Yang, 2010].

In the literature, there are various kinds of attempts to an-
swer this question. A usual starting point is by assuming
that tasks come from different clusters, and intra-cluster tasks
share some form of relatedness. For instance, in [Jacob et
al., 2009; Zhou et al., 20111, it is assumed that tasks within a
cluster are close to each other in the sense of ¢ distance. Reg-
ularization comes in the form of /5 distance of tasks within
the same cluster. However, a major limitation in this kind of
approach is that tasks that are negatively correlated will be put
into different clusters. This prevents the sharing of informa-
tion between negatively correlated tasks, which is undesired
for MTL. A recent work [Zhou and Zhao, 2016] proposed
a flexible clustered MTL method that aims to minimize the
weighted /5 distance between each task and its representative
tasks. However, it still fails to exploit common information
among negatively correlated tasks.

Some methods were proposed to remedy this issue [Ar-
gyriou et al., 2008b; Kang er al., 2011] by assuming that
task parameters in a cluster share a low dimensional subspace.
Trace norm penalty is used as regularization in these methods
to help find the low dimensional subspace within each clus-
ter. Another work [Kumar and Daumé 111, 2012] that exploits
the low dimensional subspace structure of tasks assumes that
each task is represented by a sparse representation of a set
of latent basis tasks. It allows tasks from the same cluster
to have similar sparse representation pattern. Meanwhile, it
allows different clusters have one or more common bases.
However, most of the above methods [Argyriou et al., 2008b;
Kang er al., 2011; Kumar and Daumé III, 2012] need to ei-
ther assume the number of clusters or assume the number of
latent tasks beforehand, which makes it inflexible for MTL
when the number of clusters is usually unknown. One may
need to try different numbers of clusters (or latent tasks) and
cross-validate before determining the number, which incurs a



lot of computation. This is particularly costly when the num-
ber of clusters is large and hard to determine.

One solution to eliminate the selection process is by con-
sidering all available tasks as basis tasks, and each task can
be reconstructed by a sparse linear combination of other tasks
through a ¢;-norm regularizer [Lee ef al., 2016]. How-
ever, the ¢/1-norm sparsity-induced solution may not provide
a complete information of the clustering structure among the
tasks. Specifically, when a task is highly correlated to several
tasks, the ¢1-norm sparsity-induced solution will only assign
a non-zero weight to one of the correlated tasks, and leave the
weights of other correlated tasks being zeros, which prohibits
the method from finding a clustering structure in MTL.

In our proposed method, we assume that each task param-
eter is represented by a linear combination of other tasks’
parameters. To enable automatically grouping of correlated
tasks, trace Lasso [Grave et al., 2011] penalty instead of ¢ -
norm is used as regularization in our model. This penalty is
adaptive to correlatedness of variables, therefore, making it
possible for our model to adaptively learn the grouping infor-
mation as well as the sparse relationship between tasks. Our
model can be reduced to MTL with /1 -norm based regulariza-
tion when all the tasks are uncorrelated with each other. But
when some tasks have correlations with each other (which is
the case in MTL), our model can adaptively learn the weights
for linear combinations of tasks so that correlated tasks are
grouped together. Experiments results on both synthetic and
real world datasets validate the effectiveness of our method in
both generalization performance and group clustering effect.

2 Related Work

There are two main categories of approaches proposed in
the literature for MTL based on different assumptions. One
category of approaches assumes all tasks be related to each
other [Evgeniou and Pontil, 2004; Ando and Zhang, 2005].
Relatedness among tasks is either by enforcing the distance
between task parameters to be close to each other or by en-
forcing the task parameters lie in the same low-rank subspace.
However, in real-world applications this assumption may not
hold. To address this issue, several methods in the other
category have been proposed by assuming that tasks can be
grouped into clusters. Within each cluster, task parameters
share a common prior or/and are close to each other in some
distance metric [Jacob er al., 2009]. However, a problem for
this kind of approaches is that tasks which are negatively cor-
related are put in different clusters, which is not desirable.
There are several works that aim at solving this problem
in clustered MTL. One solution is to incorporate grouping
information into subspace regularization based method [Ar-
gyriou et al., 2008b; Kang et al., 2011; Kumar and Daumé
IIT, 2012]. In [Argyriou et al., 2008b], tasks in each group
are assumed to share a common linear transformation of some
feature vectors. It has been shown to be equivalent to mini-
mizing the trace norm of each group’s task weight matrix.
In [Kang et al., 2011], tasks are assumed to come in groups,
and each group of task parameters are assumed to lie in a
low-dimensional subspace. This method proposes to mini-
mize the square of trace-norm of each group’s weight matrix.

However, number of groups needs to be pre-determined in
advance. In practice, cross-validation is needed to choose an
appropriate number of groups. This will become more and
more expensive when number of groups becomes larger and
larger. In [Kumar and Daumé III, 2012], it assumes there
exist a small number of latent tasks and every task can be
represented by a linear combination of the latent tasks. The
modeling of latent tasks allows tasks within a group lie in a
low-dimensional subspace, and it also allows tasks from dif-
ferent groups to overlap with each other through having some
common bases. A practical issue for this method is that num-
ber of latent tasks still needs to be determined beforehand.

Different from the above three clustered MTL methods, an-
other work [Zhou and Zhao, 2016] allows for flexible cluster-
ing of tasks by assuming that one task can be clustered into
multiple clusters with different weights. Each cluster has its
own representative task, and each task is represented by some
of these. This is done by regularizing the /5 distance between
tasks with their representative tasks. Though this method can
waive the determination on the number of task clusters, it fails
to group negatively correlated tasks into a same cluster as £5-
norm distance is used for measuring the similarity between
task parameters. In some other recent works, methods were
proposed to learn sparse multi-task relationships by imposing
£1-norm penalty on task covariance matrix [Zhang and Yang,
2017] or on precision matrix [Zhang and Schneider, 2010;
Rai et al., 2012]. Those methods are based on probabilistic
models by placing a matrix variate prior on task weight pa-
rameters. By imposing the sparsity-inducing regularization,
those methods attempt to learn a sparse task covariance or
precision matrix and use it in learning tasks jointly. They are
able to learn negative task correlations. However, their focus
is more on learning sparse relationship instead of learning the
grouping structure of tasks.

Motivated by the limitations of existing clustered MTL
methods, which need to either pre-assume certain informa-
tion about the grouping, such as number of groups, or number
of latent tasks, or fail to exploit negative correlations among
tasks, we aim to design our method such that it could auto-
matically find the grouping (or clustering) information among
multiple tasks and exploit this grouping information in learn-
ing related tasks jointly. We also hope that tasks of both pos-
itive and negative correlations can be assigned to the same
cluster. A recent work that is relevant to ours is [Lee et al.,
2016], where each task is assumed to be represented by other
tasks, but through a linear combination of them. In their
model, besides asymmietric relationship between tasks, it also
aims at learning a sparse relationship between tasks by im-
posing a sparsity penalty. When tasks come in groups, their
method could also discover the underlying structure of clus-
ters, however the sparse solution of relationship could some-
times be too sparse to provide sufficient information in group-
ing related tasks together. We will further discuss the differ-
ence between our proposed method and theirs in Section 4.2.

3 Preliminary: Trace Lasso

Trace Lasso [Grave et al., 2011] is proposed as a regularizer
that interplays between the ¢;-norm and the ¢2-norm. Con-



sider an empirical risk minimization problem as follows,
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where x; € R?*! is an input, y; is its corresponding output,
and Q2(w) is a regularization term needed to be specified. We
denote by X = (x1,-,%,) € R™ < the input matrix,
andbyy = (y1,---,yn)’ € R™¥! the output vector. The
column vectors of X, {x(i)}le, are called predictors, which
correspond to different dimensions of w. Formally, the trace
Lasso penalty is defined as

Q(w) = || X Diag(w)],

where Diag(w) converts the vector w into a diagonal matrix
in which the i-th diagonal entry is w;. There are some inter-
esting properties of trace Lasso:

o If all the predictors are orthogonal, then it is equivalent
5 yd
. . . @
to ¢1-norm with normalized predictors, { H;((i)l\z } .
i=1
o If all the predictors are equal, it becomes equivalent to
{5-norm with normalized predictors.

These properties make the penalty adaptive to the correlation
between predictors, and thus make the selection of predictors
more stable than Lasso.

4 Methodology

Suppose we are given m tasks {7;}7,, and each task T}
consists of a set of training data D; = {(xi;,¥i;),J =
1,2,...,N;}, where x;; € R?! denotes the j-th data in-
put of task ¢ with y;; being its corresponding output. Denote
by {w; € R¥*1}™  the weight parameters of the m tasks,
which are stacked to form a weight matrix W of size d x m.
To exploit the relationships between tasks, we assume that
each task parameter is represented by a linear combination of
other task parameters:

w; A ZCkiwk =Wg;, Vie {1,2,--- ,m},
k=1

where C € R™*™ is a matrix that describes the correlation
between tasks, c; denotes the i-th column of C, and the entry
Cy; denotes the weight of basis task wy, in representing w;. It
characterizes how much of the model of task k is transferred
to the model of task 7. Note that {C,;}7, are defined to be
zeros, and the values of the other entries are to be learned,
which can be positive, zero, or negative such that both posi-
tive and negative correlations between tasks can be captured.

4.1 Motivation

By considering each column of W as a basis, then ¢; €
R™*! can be considered as a new representation (or a vector
of coefficients) for w; € R?*!. Tasks that belong to the same
group should have similar sparsity patterns in their new rep-
resentations. Therefore, the grouping structure of the tasks is
embedded in the task correlation matrix C. Ideally, only coef-
ficients between related tasks should be active. If we reorder

the index of tasks according to task groups, we expect C to be
a block-diagonal matrix, i.e. only tasks within a group should
have weight coefficients with each other.

In the literature, a common approach to learn C is by
imposing the ¢;-norm penalty on each column of C, i.e.,
c;, [Kumar and Daumé I11, 2012; Lee et al., 2016]. However,
when task parameters from the same group are highly cor-
related, the /1-norm minimization would generally select one
representative task at random, leaving the coefficients of other
related tasks to be zeros (or close to zeros). Therefore, the ;-
norm induced sparse solution may not capture the sufficient
information about task grouping. What we hope to derive is a
method that can automatically learn the grouping structure of
tasks. At the same time, by making use of the grouping struc-
ture, the generalization performance can be improved through
learning the related tasks together.

Trace Lasso [Grave et al., 2011] mentioned in section 3 is
a regularizer that interplays between the ¢;-norm and the /-
norm. The regularizer is adaptive to the correlation of data,
i.e., the task weight parameters W in our case, while learning
the sparsity of the coefficient vectors, i.e., each c; in our case.
In other words, it incorporates the information of correlation
between data predictors, {w;}s, into the regularizer. When
all data predictors are uncorrelated, the trace Lasso behaves
as the /1-norm. In the case when data predictors are highly
correlated, trace Lasso behaves like the /5-norm. Therefore,
we propose to use the trace Lasso penalty as a regularizer
on the task linear combination coefficients {c;}’s. The adap-
tivity of trace Lasso to the correlation between different task
weight parameters can help us to represent each task with a
group of its correlated tasks.

4.2 Proposed Objective

Based on the motivation described in the previous section, our
proposed method is formulated as follows:
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where the £(w;, D;) denotes the training loss of the i-th task
with a convex loss function £(-), and A\, > 0 are the reg-

ularization parameters. W _; denotes the matrix W without

the 7-th column, and cg_i] denotes the column vector ¢; with-

out its i-th entry. The first term in the objective is the sum
of training losses over all the tasks. The loss functions can
be different for different learning problems. The second term
acts as a regularization to enforce the assumption that each
task is a linear combination of other tasks. And the third term
is the trace Lasso penalty imposed on the task relationship
vectors {c;}’s in C.

Note that in [Lee et al., 2016], each task is also represented
by a linear combination of other tasks’ parameters. However,
instead of using the trace Lasso regularization as proposed
in our method, their method used the ¢;-norm regularization
on each coefficient vector c;. As discussed in Section 4.1,



the ¢1-norm regularization fails to return rich clustering struc-
ture among the tasks. In addition, although it is possible for
the matrix C to take negative values, they restrict C to be
of non-negative values in their proposed model. In this way,
their method fails to exploit negatively correlated tasks for
task representation reconstruction.

5 Optimization
Before introducing the optimization method, we have the fol-
lowing theorem about the optimization problem (1).

Theorem 1. Problem (1) is not jointly convex but is bi-convex
with respect to W and C.

Proof. We prove that problem (1) is not jointly convex by
showing that the last term f(W,c) = ||[WDiag(c)||. is not
convex through an counter example: given 6 = 0.5,

10 10 1 11 1
W= [ go] e = o] o= o o] = [
we have
|(6W, + (1 — 6)W2)Diag(6c, + (1 — 6)ca)]|.
> 0|WiDiag(c1)|l« + (1 — 0)[[W2Diag(cz)||-,
which violates the definition of convex function. Thus prob-
lem (1) is not convex.

With fixed W, the optimization problem (1) is left with
last two terms. It is easy to verify that the second last term is

convex with respect to {cg_i] } . The last term is separable

in cg_l], and each sub-term is convex with respect to cg_l]
shown in [Grave et al., 2011].

If C is fixed, then the optimization problem (1) is left with
the first term and the last term. It is easy to verify that the
first term is convex with respect to W since £ is convex with
respect to W. It remains to show that the last term is convex.
Define f(W) = ||[WDiag(c)||., we have:

F(OW1 + (1 — )W)
[(6W1 + (1 — 0)W3)Diag(c)||
= ||#WDiag(c) + (1 — )W zDiag(c)||.

as

< 0][WDiag(c)||« + (1 — 0)[[W:Diag(c)]|
= 0f(W1)+(1—-0)f(Ws)
This completes the proof. O

Based on Theorem 1, we propose to an alternating opti-
mization algorithm over W and C which is presented in Al-
gorithm 1. To be specific, W is initialized by performing sin-
gle task learning over each task. In each alternating step (e.g.
W-step or C-step), the alternating direction method of mul-
tipliers (ADMM) method [Boyd et al., 2011] is used to solve
the convex optimization problem over the respective variable.

5.1 Solving C

With fixed W, since the trace Lasso penalty is non-smooth,
we propose to use ADMM for solving the problem. In order
to apply ADMM, we rewrite the optimization problem (1) as:

mln ZHW, er’anJiH*, (@)
i—1

st. J; = W_iDiag(CE i]), Vi=1,...m

_ch_i]

Algorithm 1 Optimization procedure for solving (1)

Input: Data D;

Initialize: W° C°, ¢ =0

while not converge do
update C?t! through solving (2) by ADMM. (C-step)
update W9t through solving (4) by ADMM. (W -step)
qg=q+1

end while

QOutput: W9 C4

This step can be interpreted as learning the task relationships
through fixed task parameters. The augmented Lagrangian
for (2) is defined as follows ({U;}, are introduced as dual
variables in scaled form):

Ll(Q{Ji}?lp{Uz‘}?L)
- gzuwi- +VZIIJII*
i=1

— W_,Diag(c; )

1,(3)
F

The ADMM algorithm consists of the following iterations:
(a) Ct « argmin Li(C {3}, {U; 3 ),

(b) JF argmle(CJr {J3 AU, Vie{l,..,m
© U « U, + I — W_;Diag(ct™™), vie {1,..,m},

where T indicate that the updated version of the correspond-
ing variable. Step (a) has a closed form solution whose form
is similar to that of the least square problem, while the closed
form solution of step (b) is given by applying matrix soft-
thresholding operation.

5.2 Solving W

With fixed C, similarly, ADMM is used to solve the following
reformulated optimization problem.

N Ay [
min ;E(W“'D)+2;HWZ W_;c;
m

+7>_11Zills, &)
=1

2

st. Z; = W_iDiag(cgfi]) Vi={1,....,m}

In this step, task relationship information in C is used to help
learn W. The second term in the objective enforces the linear
combination assumption. The trace Lasso term helps with
encouraging related tasks to have correlated task parameters.
The augmented Lagrangian for (4) becomes:

( AZi}i2 {UGL)
:ZL’(wi, ZHWZ

+72||Z I+ +pZHz ~ W_;Diag(cl™)
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Again {U;}", are introduced as dual variables in scaled
form. The ADMM algorithm consists of procedure that is
similar to that of solving C.

6 Experiments

We perform experiments on both synthetic and real-world
datasets. Our proposed method Group Adaptive Multi-Task
Learning (GAMTL) is compared with the following base-
lines:

e STL: Single task learning method, in which tasks are
learned independently.

e MTRL: Multi-task relationship learning method pro-
posed in [Zhang and Yeung, 2010] is a MTL method
that attempts to learn task covariance matrix and uses it
to help MTL learning.

e AMTL: Asymmetric multi-task learning method pro-
posed in [Lee et al., 2016]. It assumes that each task
is represented by a sparse non-negative linear combina-
tion of other tasks, which allows for asymmetric infor-
mation transfer between tasks. The method also intro-
duces a model with a different training loss model scaled
by task outgoing weights in the task correlation coeffi-
cient vector. As our proposed model focuses on learn-
ing task relatedness, we compare our method with the
AMTL-noLoss model in [Lee et al., 2016], which uses
the normal training loss term as ours.

e GO-MTL: Method proposed in [Kumar and Daumé III,
2012], which allows for task grouping and overlap by
learning latent basis tasks. Each task is represented by a
sparse linear combination of the latent basis tasks.

6.1 Synthetic Dataset

To test the effectiveness of our proposed method in terms of
adaptive grouping and generalization performance, we evalu-
ate our method on two synthetic datasets. The first synthetic
dataset, denoted by Synthetic, consists of 100 classification
tasks, with 5 clusters of tasks. Size of each cluster is set
to 10, 20, 20, 20, 30, respectively. In each cluster, we first
randomly generate 3~5 correlated tasks, and then generate
the rest tasks by linearly combining those tasks. The sec-
ond synthetic dataset, denoted by Synthetic-pos, is generated
in the same manner but with only positive linear combina-
tion in terms of task relationships. This dataset is for better
comparison with AMTL which only learns positive task re-
lations. Figure 1 shows the learned task correlation matrix
of our method with comparison to ATML. Our method learns
the underlying group structure of task correlations precisely.
In comparison, ATML could only learn a sparse correlation,
but fails to recover the task grouping structure. Our method
also has a better performance in terms of prediction error rate
on the testing set: {7.55%, 1.56%} compared with {17.43%,
17.53%} for AMTL.

6.2 Real-world Datasets

Next, we evaluate our proposed method on the following real-
world datasets. School: this is a regression dataset which is
consisted of exam scores of students from 139 schools. Each
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Figure 1: Comparison of learned task correlation matrix

school corresponds to a task. By adding 1 to the end of all
data to account for the bias term, each data point has 26 fea-
tures. We use the splits given by [Argyriou et al., 2008a]
for training and testing. MDS [Blitzer et al., 2007]: this is
a dataset of product reviews on 25 domains (apparel, books,
DVD, etc.) crawled from Amazon.com. We delete three do-
mains with less than 100 instances and make it a MTL prob-
lem with 22 tasks. Each task is a sentiment classification task
that classifies a review as negative or positive. The number
of instances per task of the original dataset varies from 314 to
20,751. In our dataset, for tasks with more than 500 instances,
500 instances are randomly drawn to form the reduced-size
tasks. Training and testing samples are obtained using a 30%-
70% split. CIFAR [Krizhevsky, 2009]: CIFAR10 is an image

classification dataset with 10 classes. We generate (120) =45
tasks , each of which is a one v.s. one classification task. For
example, task ‘1 v.s. 2’ means we use class 1 and class 2 to
construct a binary classification task. The rest of the tasks are
constructed in a similar fashion. In each task, 120 training
data points are randomly drawn equally from the two classes,
the rest are used as testing data.

Table 1 shows the prediction performance of our proposed
method (GAMTL) and other baselines on real-world datasets.
It could be observed that except School dataset, our proposed
GAMTL method could outperform other state of art meth-
ods. On school dataset, GO-MTL gets the best prediction
performance. Our method and AMTL has similar perfor-
mance. This is also observed in [Lee ef al., 2016]. On School
dataset, all tasks are highly correlated with each other as they
are solving the same problem (score prediction). There is less
task group structure information that could be utilized by our
method. This is also verified in our learned task correlation
matrix on School dataset as shown in Figure 2. As can be
seen from the figure, there is no obvious group structure.

On MDS dataset, our method performs the best among all



Table 1: Comparison performance on real-world datasets

Method School MDS CIFAR

STL 10.39 £ 0.12 28.77 £ 0.56% 19.01 £ 0.43%
MTRL 10.30 £ 0.08 12.92 £ 0.23% 16.70 £ 0.19%
AMTL 10.23 £ 0.10 14.31 £ 0.29% 18.66 £ 0.22%
GO-MTL  10.02 + 0.09 17.01 £ 0.38% 17.03 £ 0.34%
GAMTL 1025 +£0.09  12.82 + 0.25% 16.63 + 0.21%

20 40 60 80 100 120

(a) GAMTL(School)

20 40 60 80 100 120

(b) AMTL(School)

Figure 2: Learnd task correlation matrix on School

the methods. Figures 3(a), 3(c), 3(e) visualize of the learned
task correlation with reordered task index. For AMTL and
our method, we plot the task correlation matrix C as de-
scribed in section 4. For GO-MTL, we plot the weights of lin-
ear combination of latent tasks (denoted by matrix S in their
paper). The x-axis denotes the weights of linear combination,
and the y-axis denotes the latent tasks index. We see from
the figures that our method has learned useful information
about the task grouping in MDS dataset, while the other two
baseline methods fail to learn a clear grouping structure. Ac-
cording to the learned task correlation matrix of our method,
the 22 tasks are grouped into 4 clusters shown as follows:

Group | books, computer & video games, dvd, magazines, music, videos

Group 2 camera & photo, cell phones & service, electronics, software

Group 3 apparel, beauty, gourmet food, grocery, jewelry & watches

Group 4 automotive, baby, heglthy & personal care, kitchen & housewares,
outdoor living, sports & outdoor, toys & games

The learned task grouping turns out to be meaningful, es-
pecially for the first two clusters. The first cluster consists
of tasks that are products from cultural industries, while the
second cluster contains tasks about electronics and software.
Tasks in the third cluster are mostly products that people will
pay more attention to their visual aesthetics. Tasks in the
fourth cluster are less relevant as a group but some of them
share common relevance with each other. The degree of rel-
evance shown in the learned task correlation matrix is also
consistent with the actual relevance of those tasks within the
cluster. Tasks within first three clusters have a larger rele-
vance compared to those in the fourth cluster according to the
learned task correlation matrix.

On CIFAR dataset, our method obtains the best predic-
tion performance compared to other baseline methods. Fig-
ures 3(b), 3(d), 3(f) gives a visualization of the learned task
correlation. The original task order are defined in the task
description section. In the visualization, the tasks index are
reordered. Similarly, as shown in the figures, we find that our
method is able to learn meaningful task group structure. Due
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Figure 3: Learned task correlation on MDS and CIFAR

to limitation of space, we could not present the full grouping
information. To give an example, the first cluster learned by
GAMTL includes tasks ‘2vs 9°, ‘3vs9’, ‘4vs9’, ‘5vs9’, ‘6
vs 9°, “7vs 9°, and ‘8 vs 9°. In comparison, the task correla-
tion learned by the other two methods (AMTL and GO-MTL)
do not have very clear task grouping structure.

In summary, experiments have shown that our method is
effective in adaptively learning the underlying task grouping
structure (if there is) in MTL. When there exists task grouping
structure in the MTL problem, our method can exploit the
task grouping formation to help improve the generalization.

7 Conclusion

We propose a MTL method to adaptively learn grouping
structure among tasks for improving generalization perfor-
mance of related tasks. Efficient algorithm is proposed to
solve the proposed optimization problem. Experimental re-
sults have demonstrated the effectiveness of our method com-
pared with other state-of-the-art methods.
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